4 Tips to Sell Your Home Faster

Since June of last year, we have seen an increase in the inventory of homes for sale month per month. Every spring and summer, the inventory increases because people want to sell their home. For those with children, they may want to be in their new home for the beginning of the school year.

If you are one of those sellers, you may find these 4 tips helpful in getting your home sold more quickly.

Make buyers feel at home

Declutter your home! Pack away all personal items like pictures, awards, and sentimental belongings. Make them feel like they belong in this house! According to the Profile of Home Staging by the National Association of Realtors,

“83% of buyers’ agents said staging a home made it easier for a buyer to visualize the property as a future home.”

Not only will your house spend less time on the market, but the same report mentioned that,

“One-quarter of buyers’ agents said that staging a home increased the dollar value offered between 1 – 5%, compared to other similar homes on the market that were not staged.”

Keep it organized

Since you took the time to declutter, keep it organized! Before the buyers show up, pick up toys, make the bed, and put away clean dishes. It is also a good idea to put out some cookies fresh from the oven or a scented candle. Buyers will remember the smell of your home! According to the same report, the kitchen is one of the most important rooms to stage in order to attract more buyers.

Give buyers full access

One of the top four elements when selling your home is access! If your home is available anytime, that opens up more opportunity to find a buyer right away. Some buyers, especially those relocating, don’t have much time available. If they cannot get into the house, they will move on to the next one.

Price it right

As we mentioned at the beginning, more inventory coming into the market guarantees there will be some competition. You want to make sure your home is noticed. The key to selling your house in 2019 is ensuring it is Priced to Sell Immediately (PTSI). That way, your home will be seen by the greatest amount of buyers and will sell at a great price before more competition comes to market!

Bottom Line
If you want to sell your house in the least amount of time at the best price with as little hassle as possible, a local real estate professional is a useful guide. Call us today to find out what you need to do to sell your home more quickly.

How big data and machine learning are impacting the real estate industry

After some time as a real estate professional, you can get pretty good at predicting pricing and supply-and-demand trends in the market. However, a number of new technologies developed over the last few years have helped advance the sector enormously. Here, we take a look at the ways big data and machine learning (ML) can help real estate pros make accurate predictions faster and reduce costs.

Streamlining valuations

Real estate appraisers, assessors, lenders and investors can all use AI-based automated valuation models (AVMs) to inform and optimize their valuation processes. These AVMs enable real estate professionals to incorporate more variables into their calculations and derive valuable new insights from the data they have. According to the European Center for Sustainable Finance, the absolute error on AVM appraisals stands at 9% while also providing instant, real-time valuations at low cost.

A number of companies already use ML in their valuation models, including Zillow, Redfin and Opendoor. When potential home buyers search these sites, they see estimated selling prices derived from the latest data using an AVM. Lenders such as Fannie Mae are using AVMs as well.

AI is starting to play a role in commercial property valuations too. The NYC Wide Data Project from the MIT Real Estate Innovation Lab, for example, collects data on a huge range of attributes that may impact real estate in New York City. One of the goals of this project is to better understand the factors that influence commercial asset valuation.

Tree removal Jacksonville Fl

Assessing risk

Lenders, borrowers and insurance companies in the real estate industry need to conduct risk assessments. Like so many other aspects of the sector, a wide range of factors may influence risk. Big data and ML can help these groups include more data in their risk assessments and conduct them more quickly and accurately.

ML can help lenders to optimize their borrowing levels and rates. Freddie Mac offers a feature to lenders in its loan advisor suite that uses AI technology to help them assess borrower risk even if the borrower does not have a credit score, which has the potential to make loans available to those who would otherwise not have access.

Insurance companies can automate the assessment of risk and the calculation of premiums. For example, Lemonade, which provides renters’ and homeowners’ insurance, uses an AI-powered system to let customers purchase a policy after entering their data online.


Identifying investment opportunities

Investors need to be able to predict real estate trends to make good investments, but the huge number of factors that influence the market makes doing so difficult. Big data technologies can help you to start organizing information about these factors, and ML can analyze this data to make predictions about which homes are likely to go on the market soon and how prices will change.

ATTOM Data Solutions, for example, has collected data on more than 155 million residential and commercial properties. This dataset includes information about a variety of factors such as property size, property use, any foreclosures, school district boundaries, environmental hazards, crime risk and more. This data can be used for a variety of applications, including how likely a property is to be sold.

As another example, researchers from Madrid, Spain, developed algorithms for homes listed at a price that is substantially lower than the market price. Investors could use these programs to identify opportunities for investment.

Matching people with properties

Another use is in matching people with properties. Sites like Zillow and Airbnb already do so to some extent, but as the technology improves, it is likely to play an even larger role in the real estate sector.

By collecting information about potential renters or homebuyers and combining it with data about available properties, ML can help to match people with properties that are likely to match their needs and preferences. This customer data can include information collected directly from customers as well as insights derived from other data-gathering techniques.

Chatbots have the potential to play a significant role in this area. People looking to rent or buy real estate could chat with a bot via a website, app or smart speaker to get started in the rental or buying process. Automating the start of the process could augment the jobs of brokers and real estate agents, reducing costs to as little as $1.76 (€1.6) per lead and matching people to the right property faster.

Conserving energy

Property managers could also use AI technology to reduce their costs and provide a better experience for tenants. Sensors integrated into lighting, HVAC systems, elevators, security systems and more can help to optimize their operation and reduce energy costs.

Smart thermostats, for example, use ML to optimize their performance over time to reduce energy usage and make life more comfortable for tenants. For example, the system can learn a tenant’s habits using ML and then automatically lower the temperature before they leave for work in the winter and raise it right before they get home. Smart refrigerators can reduce their energy usage during times of peak demand when electricity is at its most expensive. Installing these technologies in a multi-tenant building can deliver significant savings over time. We buy houses Fort Worth

In the future, sensors may be able to predict when equipment such as HVAC systems, plumbing systems and appliances need repair. This approach to maintenance, called predictive maintenance, is already in use in the manufacturing industry. Over the coming years, it may begin to make its way into homes and the real estate sector as well. House Buyers

Big data and ML can help real estate professionals, as well as renters and home buyers, to improve their understanding of the ever-changing real estate market. These technologies have already started to change the sector, and they will continue to do so in the years to come.

Visit our sponsors: Daytona Gutters